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MASONRY FAILURE CRITERION UNDER BIAXIAL STRESS STATE

By C. A. Syrmakezis1 and P. G. Asteris2

ABSTRACT: Masonry is a material that exhibits distinct directional properties because the mortar joints act as
planes of weakness. To define failure under biaxial stress, a 3D surface in terms of the two normal stresses and
shear stress (or the two principal stresses and their orientation to the bed joints) is required. This paper describes
a method to define a general anisotropic (orthotropic) failure surface of masonry under biaxial stress, using a
cubic tensor polynomial. The evaluation of strength parameters is performed using existing experimental data
through a least-squares approach. The validity of the method is demonstrated by comparing the derived failure
surface with classical experimental results. The ability to ensure the closed shape of the failure surface, the
unique mathematical form for all possible combinations of plane stress, and the satisfactory approximation with
the results of the real masonry behavior under failure conditions are some of the advantages of the proposed
method.
INTRODUCTION

Masonry, one of the older structural materials, has a me-
chanical behavior that has not yet been fully investigated. Only
recently have there been systematic experimental and/or ana-
lytical investigations on the response of masonry and its failure
modes.

Taking into account the numerous uncertainties of the prob-
lem, an analytical mathematical model describing the masonry
failure surface in a simple manner should be an efficient tool
for the investigation of the behavior of masonry structures.
Many analytical criteria for masonry structures have already
been proposed (Dhanasekar et al. 1985; Naraine and Sinha
1991; Scarpas 1991; Syrmakezis et al. 1995, 1997, 1999).

Experimental investigations can also be considered as an
important support to the aforementioned efforts (Samarasinghe
1980; Page 1980, 1981; Tassios and Vachliotis 1989).

The aim of this paper is to introduce an anisotropic (ortho-
tropic) failure surface under biaxial stress for masonry, using
a cubic tensor polynomial. The agreement of this model with
test data (Page 1981) clearly supports the use of the cubic
tensor polynomial as a masonry failure surface under biaxial
plane stress.

The method is presented in both a simple form and a general
form. In both cases, the following characteristics of the poly-
nomial have been proposed:

• It ensures the closed shape of the failure surface.
• It is to be expressed in a unique mathematical form for

all possible combinations of plane stress. Note that the
use of a failure surface that consists of more than one
type of surface could demand additional effort in the anal-
ysis process of the masonry structure (Zienkiewicz and
Taylor 1991). According to Zienkiewicz et al. (1969), the
computation of singular points (‘‘corners’’) on failure sur-
faces may be avoided by a suitable choice of a continuous
surface, which usually can represent, with a good degree
of accuracy, the true condition.

• It leads to results in satisfactory approximation with the
results of the existing real masonry behavior (experi-
mental data) under failure conditions.
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• It ensures the convex shape of the failure surface. Ac-
cording to Hill (1950) and Prager (1959), the failure sur-
face for a stable material must be convex. This, in math-
ematical terms, is valid if the total Gaussian curvature K
of the failure surface is positive.

PREVIOUS RESEARCH

Masonry exhibits distinct directional properties due to the
influence of the mortar joints. Depending upon the orientation
of the joints to the stress directions, failure can occur in the
joints alone or simultaneously in the joints and blocks.

The failure of masonry under axiaxial and biaxial stress
states has been studied experimentally in the past by many
researchers, but there have been few attempts to obtain a gen-
eral analytical failure criterion. The following is a brief review
of the most representative experimental and analytical inves-
tigations.

Experimental Investigations

Researchers have long been aware of the significance of the
bed joint angle to the applied load. Johnson and Thompson
(1969) carried out compression tests on brick masonry disks
to produce indirect tensile stresses on joints inclined at various
angles to the vertical compressive load. Differences in failure
patterns of the specimens were evident with the disk bed joints
at various angles. The highest strength of the masonry has
been observed for the cases when the compressive load was
perpendicular to the bed joints or when the principal tensile
stress at the center of the disk was parallel to the bed joints.
In these cases failure occurred through bricks and perpendic-
ular joints. The lowest strength has been observed when the
compressive load was parallel to the bed joints or when the
principal tensile stress at the center of the disk was perpen-
dicular to the bed joints. In these cases failure occurred along
the interface of the brick and mortar joint.

Similar tests have been reported by Page (1981). These ex-
perimental results, referring to a total of 102 panels, are used
in this paper to demonstrate the validity of the method pre-
sented, and they will be extensively discussed. Ratios of ver-
tical compressive stress s1 to horizontal compressive stress s2

of ` (uniaxial s1), 10, 4, 2, and 1 have been used in conjunc-
tion with a bed joint angle u, with respect to the s1, in direc-
tions of 07, 22.57, 457, 67.57, and 907. A minimum of four tests
were performed for each combination of s1, s2, and u. The
failure envelopes that Page obtained by plotting mean curves
for each bed joint angle are shown in Figs. 1–3. These curves
will be used in this paper in comparisons with the results of
the proposed analytical process.

A specific category of experimental investigations refers to
the most critical part of the failure envelope of masonry, under
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FIG. 1. Failure of Brickwork under Biaxial Compression (u 5
08) (Page 1981)

FIG. 2. Failure of Brickwork under Biaxial Compression (u 5
22.58) (Page 1981)

heterosemous biaxial stresses. Such a biaxial stress state ap-
pears often in the case of in-plane loaded walls (e.g., under
seismic loading or under differential settlements). The ma-
sonry failure surface for this case has been investigated by
Tassios and Vachliotis (1989). To facilitate the experimental
study of full-scale masonry under plane heterosemous stress
conditions, a double diagonal compression test has been con-
ceived. Using this tool, a number of tests have been carried
out in the Laboratory of Reinforced Concrete of the National
Technical University of Athens. The angle between the direc-
tion of compressive stress and the bed joint has been kept
constant at 457. This angle seems to present the highest prac-
tical interest for the verification under conditions of seismic
and differential settlements. Similar to some of the curves cited
in the literature (Samarasinghe and Hendry 1980; Page 1982),
the shape of the obtained critical curve shows, in general, the
unrealistic nature of a linear failure criterion for masonry and
the heterosemous biaxial stress state.
JOURNAL OF
FIG. 3. Failure of Brickwork under Biaxial Compression (u 5
458) (Page 1981)

Analytical Investigations

A failure surface for brick masonry in the tension-tension
principal stresss region has been derived analytically by Page
(1980). The shape of this failure surface was found to be crit-
ically dependent on the bed joint orientation and the relation-
ship between the shear and tensile bond strengths of the mortar
joints.

There have been few attempts to obtain a general failure
criterion for masonry because of the difficulties in developing
a representative biaxial test and the large number of tests in-
volved. The problem has been discussed by Yokel and Fatal
(1976) with reference to the failure of shear walls. Dhanasekar
et al. (1985) interpolated the test data of Page (1981) by means
of three elliptic cones; however, as the authors mentioned, the
cones do not correspond with the observed distinct modes of
failure. The elliptic cones have been expressed by a second-
order tensor polynomial. This form of polynomial has also
been used by Scarpas (1991) to define a general failure cri-
terion for masonry. For both criteria, a number of uniaxial
compression tests as well as biaxial tests are needed to deter-
mine the coefficients of the polynomial. A wide review of the
subject can be found in Samarasinghe and Hendry (1980) and
Hendry (1990).

ANALYTICAL MODEL

For the expression of an analytical failure model of ma-
sonry, a polynomial that is available already for composite
materials is proposed. This failure surface in the stress space
can be described by the equation (Tsai et al. 1971; Wu 1972;
Jiang and Tennyson 1989)

f (s ) = F s 1 F s s 1 F s s s 1 ? ? ? 2 1 = 0 (1)< i i ij i j ijk i j k

in which s< = components of stresses (< = 1, 2, . . . , 6); and
Fi, Fij, and Fijk = coefficients to be properly determined (i, j,
and k = 1, 2, . . . , 6).

If one restricts the analysis to a plane stress state and con-
siders that a cubic formation is a reasonably accurate repre-
sentation of the failure surface, then (1) reduces to
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2F s 1 F s 1 F s 1 F s 1 F s s 1 F s s 1 F s s1 1 2 2 6 6 11 1 12 1 2 16 1 6 21 2 1

2 2 31 F s 1 F s s 1 F s s 1 F s s 1 F s 1 F s22 2 26 2 6 61 6 1 62 6 2 66 6 111 1

2 2 2 21 F s s 1 F s s 1 F s s 1 F s s 1 F s s s112 1 2 116 1 6 121 1 2 122 1 2 126 1 2 6

2 2 2 21 F s s 1 F s s s 1 F s s 1 F s s 1 F s s161 1 6 162 1 2 6 166 1 6 211 2 1 212 1 2

2 3 21 F s s s 1 F s s 1 F s 1 F s s 1 F s s s216 1 2 6 221 1 2 222 2 226 2 6 261 1 2 6

2 2 2 21 F s s 1 F s s 1 F s s 1 F s s s 1 F s s262 2 6 266 2 6 611 1 6 612 1 2 6 616 1 6

2 2 2 21 F s s s 1 F s s 1 F s s 1 F s s 1 F s s621 1 2 6 622 2 6 626 2 6 661 1 6 662 2 6

31 F s 2 1 = 0666 6 (2)

The following assumptions have been made (Wu and Scheu-
blein 1974):

• Symmetry of the material is assumed by the identity of
‘‘symmetric’’ coefficients, for i that is, Fijk =/= j /= k /= i;
Fikj = Fjik = Fkij = Fkji = Fjki, and Fij = Fji.

• The material under a given shear loading prossesses a
common shear strength (S = S 9) for both the positive di-
rection and the negative direction of shear loading. Con-
sequently, assuming that there is no dependence on the
shear loading direction, the terms with odd exponents of
s6 can be eliminated.

• The redundant terms Fiii (for i = 1, 2, and 6) are omitted
(Wu and Scheublein 1974).

Using the notations (sx, sy, and t) instead of (s1, s2, and s6),
(1) takes the form

2 2 2f (s , s , t) = F s 1 F s 1 F s 1 F s 1 F t 1 2F s sx y 1 x 2 y 11 x 22 y 66 12 x y

2 2 2 21 3F s s 1 3F s s 1 3F s t 1 3F s t 2 1 = 0112 x y 122 x y 166 x 266 y (3)

EVALUATION OF STRENGTH PARAMETERS

Principal Strength Tensor Components Fi, Fii

Concerning factors Fi and Fii, these can be determined using
the experimental monoaxial tensile and compressive failure
stresses across the x- and y-axes, respectively, as well as the
shear failure stresses in the x, y-plane.

Monoaxial strengths of the wall in tension and compression
across the x-axis are used and noted as X and X9, respectively.
For the case of masonry, the two points, (X, 0, 0) and (2X9,
0, 0), intersecting the x-axis and the failure surface are deter-
mined. For these points, (3) takes the form

2 2F X 1 F X = 1; 2F X 9 1 F X 9 = 1 (4)1 11 1 11

The solution of the system of (4) gives the values

1 1 1
F = 2 ; F = (5)1 11

X X 9 XX 9

The monoxial tests across the y-axis leads, respectively, to
the values of

1 1 1
F = 2 ; F = (6)2 22

Y Y 9 YY 9

The points of the failure surface, (0, 0, S) and (0, 0, 2S),
are determined by the test of the masonry panel in pure shear.
Using (3), the result for these points is

1
F = (7)66 2S

Interaction Strength Tensor Components Fij, Fijk

To determine the masonry failure criterion under the biaxial
stress rate [(3)], values of constants F12, F112, F122, F166, and
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F266 have to be determined using the least-squares method. The
constants are calculated through the system of equations

­E ­E ­E ­E ­En n n n n= 0; = 0; = 0; = 0; = 0 (8)
­F ­F ­F ­F ­F12 112 122 166 266

where

n

2 2 2E = (F s 1 F s 1 F s 1 F s 1 F t 1 2F s sn 1 xi 2 yi 11 xi 22 yi 66 i 12 xi yiO
i=1

2 2 2 21 3F s s 1 3F s t 1 3F s t 2 1)112 xi yi 166 xi i 266 yi i (9)

The equations to be used for n groups of values (sxi, syi, and
ti) (i = 1, 2, . . . , n), properly chosen, can also be written in
the form

8S 12S 12S 12S 12S F220 320 230 212 122 12

12S 18S 18S 18S 18S F320 420 330 312 222 112

12S 18S 18S 18S 18S 3 F230 330 240 222 132 122F G F G12S 18S 18S 18S 18S F212 312 222 204 114 166

12S 18S 18S 18S 18S F122 222 132 114 024 266

n

24 s s Axi yi iO
i=1
n

226 s s Axi yi iO
i=1
n

2= 26 s s Axi yi iO
i=1

n

226 s t Axi i iO
i=1
n

226 s t Ayi i iO
i=1 (10)

where

n

j k 1S = s s t , ( j, k, l = 0, 1, 2, 3, 4)jkl xi yi iO
i=1

2 2 2A = F s 1 F s 1 F s 1 F s 1 F t 2 1i 1 xi 2 yi 11 xi 22 yi 66 i

The surface corresponding to these values F12, F112, F122,
F166, and F266 should be checked for its closed form. The sur-
face is closed if the total Gaussian curvature K for the failure
surface

1
K = 2 D > 0 (11)2 2 2(­f/­s ) 1 (­f/­s ) 1 (­f/­t)x y

is positive (Stoker 1969; Mishchenko et al. 1985), or as the
denominator is always positive, if

2 2 2 2­ f/­s ­ f/­s ­s ­ f/­s ­t ­f/­sx x y x x
2 2 2 2­ f/­s ­s ­ f/­s ­ f/­s ­t ­f/­sx y y y yD = < 0 (12)2 2 2 2U ­ f/­s ­t ­ f/­s ­t ­ f/­t ­f/­t Ux y

­f/­s ­f/­s ­f/­t 0x y

If this condition is not fulfilled (i.e., the solution does not
correspond to a closed failure surface), the areas of local min-
imum extremes have to be used. The limits of these areas are
determined through a parametric investigation for any one of
these five constants (e.g., for constant F12). Using various val-
ues for F12 (2` # F12 # 1`), the equivalent values for the
other four constants are calculated. In this case, after elimi-
nation (10) takes the form
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TABLE 1. Data of Biaxial Tests

Test number
(1)

sx

(MPa)
(2)

sy

(MPa)
(3)

t
(MPa)

(4)

1 20.727 27.542 0.000
2 20.727 28.417 0.000
3 22.272 29.250 0.000
4 22.181 28.750 0.000
5 24.545 28.667 0.000
6 27.909 27.791 0.000
7 28.818 28.750 0.000
8 29.454 24.792 0.000
9 29.590 22.333 0.000

10 211.273 25.583 0.000
11 29.272 21.000 0.000

Note: These values have been estimated from graphs (Page 1981).

18S 18S 18S 18S F420 330 312 222 112

18S 18S 18S 18S F330 240 222 132 1223F18S 18S 18S 18S G FF G312 222 204 114 166

18S 18S 18S 18S F222 132 114 024 266

n

226 s s Bxi yi iO
i=1
n

226 s s Bxi yi iO
i=1

n=
226 s t Bxi i iO

i=1
n

226 s t Byi i iO
i=1 (13)

where

2 2 2B = F s 1 F s 1 F s 1 F s 1 F t 1 2F s s 2 1i 1 xi 2 yi 11 xi 22 yi 66 i 12 xi yi

Although various values of (9) are calculated, verification
of (12) is also checked for each step. This verification leads
to the determination of the limits inside which a closed failure
surface is secured. The five values of the constants F12, F112,
F122, F166, and F266, which fulfill the requirement of the closed
failure surface and at the same time minimize the value of (9),
are selected as the solution of the problem.

APPLICATION

In the example presented, the method has been applied
through a specific computer program developed by the writers
in FORTRAN programming language. With this program, the
failure surface is determined for a real case of a masonry ma-
terial already studied experimentally (Page 1981). These data
have been used by many other researchers [e.g., Dhanaseker
et al. (1985) and Naraine and Sinha (1991)].

The experimental values for the monoaxial failure strength
estimated from graphs (Page 1981) are taken as equal to X =
0.40 MPa, X 9 = 4.3625 MPa, Y = 0.10 MPa, Y9 = 7.555 MPa,
and S = S 9 = 0.40 MPa. Using these values as well as (4)–
(7), the constants Fi and Fii are determined with the values F1

= 0.227E101 (MPa)21, F11 = 0.573E100 (MPa)22, F2 =
0.987E101 (MPa)21, F22 = 0.132E101 (MPa)22, and F66 =
0.625E101 (MPa)22.

To determine the constants F12, F112, F122, F166, and F266, (10)
is solved using experimental data of Tables 1 and 2. The re-
sults corresponding to these data are F12 = 1.640209E202
(MPa)22, F112 = 9.453948E203 (MPa)23, F122 =
8.886827E203 (MPa)23, F166 = 1.365468E201 (MPa)23, and
F266 = 1.2929976E201 (MPa)23.

The surface corresponding to these values should be
checked for its closed form. The surface (Fig. 4) is opened
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TABLE 2. Data of Biaxial Tests

Test number
(1)

sx

(MPa)
(2)

sy

(MPa)
(3)

t
(MPa)

(4)

1 24.181 28.000 0.000
2 29.909 25.042 0.000
3 28.308 28.475 0.084
4 24.555 21.310 21.622
5 25.821 25.821 3.571
6 26.620 26.620 2.120
7 25.821 25.821 23.571
8 26.620 26.620 22.120
9 28.273 28.475 20.084

10 25.227 21.310 1.622
11 24.181 28.000 0.000
12 29.909 25.042 0.000

Note: These values have been estimated from graphs (Page 1981).

FIG. 4. Open Failure Surface of Masonry in Terms of Normal
Stress (t 5 0.0, 1.0, 2.0, 3.0, 4.0, and 5.0 MPa)

because its total curvature is negative [(12) is not valid in this
case].

As the solution achieved does not correspond to a close
failure surface, the areas of local minimum extremes have to
be used. The limits of these areas are determined through a
parametric investigation for any one of the five constants (e.g.,
for constant F12).

For various values of F12 (2` # F12 # 1`), the equivalent
values for the other constants are calculated. Various values of
(9) are calculated (Fig. 5), and verification of (12) is checked
for each step. This verification leads to the determination of
the limits inside which a closed failure surface is secured. The
five values of the constants F12, F112, F122, F166, and F266 ful-
filling the requirement of the closed failure surface and at the
same time minimizing the value of (9) are chosen as the so-
lution of the problem.

The area in which the closed failure surface is ensured as
shown in Fig. 5. This area is

20.710 # F # 20.15012
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FIG. 5. Variation of En with F12, Following Eq. 9

FIG. 6. Failure Surface of Masonry in Normal Stress Terms (t
5 0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, and 3.5 MPa)

FIG. 7. Failure Curve of Masonry in Principal Stress Terms (u
5 08)
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FIG. 9. Failure Curve of Masonry in Principal Stress Terms (u
5 458)

FIG. 8. Failure Curve of Masonry in Principal Stress Terms (u
5 22.58)

According to this diagram, the best solution corresponds to
the value of F12 = 20.150 (MPa)22. For this value, the equiv-
alent values for the other constants are calculated equal to F112

= 0.3195E202 (MPa)23, F122 = 0.1045E202 (MPa)23, F166 =
0.9466E201 (MPa)23, and F266 = 0.1563E100 (MPa)23.

The failure surface (Fig. 6) for the masonry is described in
the equation

2 2 22.27s 1 9.87s 1 0.573s 1 1.32s 1 6.25tx y x y

2 22 0.30s s 1 0.009585s s 1 0.003135s sx y x y x y

2 21 0.28398s t 1 0.4689s t = 1x y (14)

The validity of the method is demonstrated by comparing
the derived analytical failure surface of (14) with the existing
experimental results (Page 1981). More than 100 experimental
data have been depicted in Figs. 7–9. In the same figures,
analytical curves are also depicted for the failure surface of
(14). The good coincidence of the experimental and analytical
data is obvious for this general failure surface with a nonsym-
metric curve.
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FIG. 11. Failure Curve of Masonry in Principal Stress Terms (u
5 458)

FIG. 10. Failure Surface of Masonry in Normal Stress Terms (t
5 0.0, 0.5, 1.0, 1.5, and 2.0 MPa)

COMPARISON TO SIMPLIFIED MODEL

Eliminating all third-order terms in (3), a simplified failure
criterion is derived

2 2f (s , s , t) = F s 1 F s 1 F s 1 F sx y 1 x 2 y 11 x 22 y

21 F t 1 2F s s 2 1 = 066 12 x y (15)

This simple form of the criterion has already been used by
Dhanasekar et al. (1985), Scarpas (1991), Andreaus (1996),
and Syrmakezis and Asteris (1999).

The constants Fi and Fii, calculated through monoaxial test
results, have the same values as for the general form of the failure
criterion. Using the data of Tables 1 and 2, the constant F12 is
calculated through the formula (Syrmakezis and Asteris 1999)

n

2 2 2(F s 1 F s 1 F s 1 F s 1 F t 2 1)s s1 xi 2 yi 11 xi 22 yi 66 i xi yiO
i=1

F = 212 n

2 22 s sxi yiO
i=1

(16)
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Using this formula, the constant F12 is calculated equal to
20.227 (Syrmakezis and Asteris 1999) and the failure surface
for this simplified model has an elliptical shape, as shown in
Fig 10.

In Fig. 11, the simplified model (dotted line) is compared
with the general model (continuous line) for the case of an
angle u (angle between the maximum principal stress direction
and the direction of the x-axis) equal to 457. It is to be noted
that the general failure criterion, through its nonsymmetric
form, can approach the nonsymmetrically dispersed experi-
mental data better than the simplified model.

CONCLUSIONS

In this paper a method is presented for the analytical deter-
mination of the failure surface of an anisotropic (orthotropic)
masonry under biaxial stress. The main advantages of the
method can be summarized as follows:

• The ability to ensure the closed shape of the failure sur-
face

• The unique mathematical form for all possible combina-
tions of plane stress to make it easier to include it into
existing software for the analysis of masonry structures

• The satisfactory approximation with the results of the real
masonry behavior (experimental data) under failure con-
ditions
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APPENDIX II. NOTATION

The following symbols are used in this paper:

Fi = strength tensor second rank;
Fij = strength tensor fourth rank;

Fijk = strength tensor sixth rank;
S, S 9 = positive and negative pure shear strengths, respectively;
X, X 9 = tensile and compressive strengths measured along x-

axis, respectively;
Y, Y 9 = tensile and compressive strengths measured along y-

axis, respectively;
u = angle between maximum principal stress direction and

direction of x-axis;
sx, sy = normal plane stresses along x-axis and y-axis, respec-

tively;
s1, s2 = maximum and minimum principal stresses, respec-

tively; and
t = shear stress measured in x, y-plane.
RUARY 2001


